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Sašo Blažič • Igor Škrjanc • Drago Matko

Received: 4 February 2013 / Accepted: 4 June 2013 / Published online: 18 June 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract In this paper an adaptive law with leakage is

presented. This law can be used in the consequent part of

Takagi–Sugeno-based control. The approach enables easy

implementation in the control systems with evolving

antecedent part. This combination results in a high-per-

formance and robust control of nonlinear and slowly

varying systems. It is shown in the paper that the proposed

adaptive law is a natural way to cope with the parasitic

dynamics. The boundedness of estimated parameters, the

tracking error and all the signals in the system is guaran-

teed if the leakage parameter r0 is large enough. This

means that the proposed adaptive law ensures the global

stability of the system. A simulation example is given that

illustrates the proposed approach.

Keywords Adaptive law � Takagi–Sugeno model �
Model-reference control � Evolving systems

1 Introduction

The problem of control of nonlinear plants has received a

great deal of attention in the past. The problem itself is

fairly demanding, but when the model of the plant is

unknown or poorly known, the solution becomes consid-

erably more difficult. Nevertheless, several approaches

exist to solve the problem. One possibility is to apply

adaptive control. Adaptive control schemes for linear sys-

tems do not produce good results, although adaptive

parameters try to track the ‘‘true’’ local linear parameters of

the current operating point which is done with some lag

after each operating-point change. To overcome this

problem, adaptive control was extended in the 1980s and

1990s to time-varying and nonlinear plants (Krstić

et al. 1995). Since we restricted our attention mainly to

nonlinear plants that are very slowly varying, the former

approaches were not as relevant even though they produce

better results than classical adaptive control. The main

drawback of adaptive control algorithms for nonlinear

plants is that they demand fairly good knowledge of

mathematics and are thus avoided by practising engineers.

Many successful applications of fuzzy controllers (Pre-

cup and Hellendoorn 2011; Galichet and Foulloy 2003;

Precup et al. 2003) have shown their ability to control

nonlinear plants. A possible extension is to introduce some

sort of adaptation into the fuzzy controller. The first

attempts at constructing a fuzzy adaptive controller can be

traced back to Procyk and Mamdani (1979), where so-

called linguistic self-organising controllers were intro-

duced. Many approaches were later presented where a

fuzzy model of the plant was constructed on-line, followed

by control parameters adjustment (Layne and Passino

1993). The main drawback of these schemes was that their

stability was not treated rigorously. The universal

approximation theorem (Wang and Mendel 1992) provided

a theoretical background for new fuzzy direct and indirect

adaptive controllers (Wang and Mendel 1992; Tang et al.

1999; Pomares et al. 2002; Rojas et al. 2006; Vaščák 2012;

Johanyák and Papp 2012; Precup et al. 2012) whose sta-

bility was proven using the Lyapunov theory.

Robust adaptive control was proposed to overcome the

problem of disturbances and unmodeled dynamics (Ioan-

nou and Sun 1996). Similar solutions have also been used

in adaptive fuzzy and neural controllers, i.e. projection

(Tong et al. 2000), dead zone (Koo 2001), leakage (Ge and
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Wang 2002), adaptive fuzzy backstepping control (Tong

and Li 2012) etc. have been included in the adaptive law to

prevent instability due to reconstruction error.

The control of a practically very important class of

plants is treated in the paper that, in our opinion, occur

quite often in process industries. The class of plants con-

sists of nonlinear systems of arbitrary order but where the

control law is based on the first-order nonlinear approxi-

mation. The dynamics not included in the first-order

approximation are referred to as parasitic dynamics. The

parasitic dynamics are treated explicitly in the development

of the adaptive law to prevent the modelling error to grow

unbounded. The class of plant also includes bounded

disturbances.

The choice of simple nominal model results in very

simple control and adaptive laws. The control law is sim-

ilar to the one proposed by Blažič et al. (2003, 2012) but an

extra term is added in the current paper. In this paper a

novel adaptive law with leakage will be presented. It will

be shown in the paper that the proposed adaptive law is a

natural way to cope with parasitic dynamics. The bound-

edness of estimated parameters, the tracking error and all

the signals in the system will be proven if the leakage

parameter r0 satisfies certain condition. This means that the

proposed adaptive law ensures the global stability of the

system. A very important property of the proposed

approach is that it can be used in the consequent part of

Takagi–Sugeno-based control. The approach enables easy

implementation in the control systems with evolving

antecedent part (Angelov et al. 2001, 2011; Angelov and

Filev 2004; Cara et al. 2010; Sadeghi-Tehran et al. 2012).

This combination results in a high-performance and robust

control of nonlinear and slowly varying systems.

2 The class of nonlinear plants

Our goal is to design control for a class of plants that

include nonlinear time-invariant systems where the model

behaves similarly to a first-order system at low frequencies

(the frequency response is not defined for nonlinear sys-

tems so frequencies are meant here in a broader sense). If

the plant were the first-order system (without parasitic

dynamics), it could be described by a fuzzy model in the

form of if-then rules:

if z1 is Aia and z2 is Bib then _yp ¼ �aiyp þ biuþ ci

ia ¼ 1; . . .; na ib ¼ 1; . . .; nb i ¼ 1; . . .; k
ð1Þ

where u and yp are the input and the output of the plant

respectively, Aia and Bib are fuzzy membership functions,

and ai, bi, and ci are the plant parameters in the i-th

domain. Note the ci term in the consequent. Such an

additive term is obtained if a nonlinear system is linearised

in an operating point. This additive term changes by

changing the operating point. The term ci is new comparing

to the model used in (Blažič et al. 2003, 2012). The

antecedent variables that define the domain in which the

system is currently situated are denoted by z1 and z2

(actually there can be only one such variable or there can

also be more of them, but this does not affect the approach

described in this paper). There are na and nb membership

functions for the first and the second antecedent variables,

respectively. The product k = na 9 nb defines the number

of fuzzy rules. The membership functions have to cover the

whole operating area of the system. The output of the

Takagi–Sugeno model is then given by the following

equation

_yp ¼
Pk

i¼1 b0
i ðuÞð�aiyp þ biuþ ciÞ

� �

Pk
i¼1 b0

i ðuÞ
ð2Þ

where u represents the vector of antecedent variables zi (in

the case of fuzzy model given by Eq. (1), u ¼ ½z1 z2�T ).

The degree of fulfilment b0
i ðuÞ is obtained using the

T-norm, which in this case is a simple algebraic product of

membership functions

b0
i ðuÞ ¼ TðlAia

ðz1Þ; lBib
ðz2ÞÞ ¼ lAia

ðz1Þ � lBib
ðz2Þ ð3Þ

where lAia
ðz1Þ and lBib

ðz2Þ stand for degrees of fulfilment

of the corresponding fuzzy rule. The degrees of fulfilment

for the whole set of fuzzy rules can be written in a compact

form as

b0 ¼ b0
1b

0
2. . .b0

k

� �T2 R
k ð4Þ

or in a more convenient normalised form

b ¼ b0

Pk
i¼1 b0

i

2 R
k ð5Þ

Due to (2) and (5), the first-order plant can be modelled in

fuzzy form as

_yp ¼ �ðbT aÞyp þ ðbT bÞuþ ðbT cÞ ð6Þ

where a ¼ a1a2. . .ak½ �T ; b ¼ b1b2 � � � bk½ �T ; and c ¼ c1c2½
. . .ck�T are vectors of unknown plant parameters in

respective domains (a; b; c 2 R
k).

To assume that the controlled system is of the first order

is a quite huge idealisation. Parasitic dynamics and dis-

turbances are therefore included in the model of the plant.

The fuzzy model of the first order is generalised by adding

stable factor plant perturbations and disturbances, which

results in the following model (Blažič et al. 2003):

_ypðtÞ ¼ �ðbTðtÞaÞypðtÞ þ ðbTðtÞbÞuðtÞ þ ðbT cÞ
� DyðpÞypðtÞ þ DuðpÞuðtÞ þ dðtÞ ð7Þ
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where p is a differential operator d=dt;DyðpÞ and DuðpÞ are

stable strictly proper linear operators, while d is bounded

signal due to disturbances (Blažič et al. 2003).

Equation (7) represents the class of plants to be con-

trolled by the approach proposed in the following sections.

The control is designed based on the model given by

Eq. (6) while the robustness properties of the algorithm

prevent the instability due to parasitic dynamics and

disturbances.

3 The proposed fuzzy adaptive control algorithm

A fuzzy model reference adaptive control is proposed in

the paper to achieve tracking control for the class of plants

described in the previous section. The control goal is that

the plant output follows the output ym of the reference

model. The latter is defined by a first order linear system

Gm(p):

ymðtÞ ¼ GmðpÞwðtÞ ¼
bm

pþ am

wðtÞ ð8Þ

where w(t) is the reference signal while bm and am are the

constants that define desired behaviour of the closed

system. The tracking error

eðtÞ ¼ ypðtÞ � ymðtÞ ð9Þ

therefore represents some measure of the control quality.

To solve the control problem simple control and adaptive

laws are proposed in the following subsections.

3.1 Control law

The control law is very similar to the one proposed by

Blažič et al. (2003, 2012):

uðtÞ ¼ bTðtÞ̂fðtÞ
� �

wðtÞ � bTðtÞq̂ðtÞ
� �

ypðtÞ þ bTðtÞ̂rðtÞ
� �

ð10Þ

where f̂ðtÞ 2 R
k; q̂ðtÞ 2 R

k; and r̂ðtÞ 2 R
k are the control

gain vectors to be determined by the adaptive law. This

control law is obtained by generalising the model reference

adaptive control algorithm for the first order linear plant to

the fuzzy case. The control law also includes the third term

that is new with respect to the one in Blažič et al. (2012). It

is used to compensate the ðbTcÞ term in Eq. (7).

3.2 Adaptive law

The adaptive law proposed in this paper is based on the

adaptive law from Blažič et al. (2003). The e1-modification

was used in the leakage term in Blažič et al. (2003). An

alternative approach was proposed in Blažič et al. (2012)

where quadratic term is used the leakage. But a new

adaptive law for r̂i is also proposed here:

_̂
f i ¼ �cfibsignewbi � cfir

0w2b2
i ðf̂i � f̂ �i Þ i ¼ 1; 2; . . .k

_̂qi ¼ cqibsigneypbi � cqir
0y2

pb
2
i ðq̂i � q̂�i Þ i ¼ 1; 2; . . .k

_̂ri ¼ �cribsignebi � crir
0b2

i ðr̂i � r̂�i Þ i ¼ 1; 2; . . .k

ð11Þ

where cfi, cqi, and cri are positive scalars referred to as

adaptive gains, r0[ 0 is the parameter of the leakage term,

f̂ �i ; q̂
�
i ; and r̂�i are the a priori estimates of the control gains

f̂i; q̂i; and r̂i respectively, and bsign is defined as follows:

bsign ¼
1 b1 [ 0; b2 [ 0; . . .bk [ 0

�1 b1\0; b2\0; . . .bk\0

�

ð12Þ

If the signs of all elements in vector b are not the same, the

plant is not controllable for some b (bT b is equal to 0 for

this b) and any control signal does not have an effect.

It is possible to rewrite the adaptive law (11) in the

compact form if the control gain vectors f̂; q̂; and r̂ are

defined as

f̂
T ¼ ½f̂ 1 f̂ 2 . . . f̂ k�

q̂T ¼ ½q̂1 q̂2 . . .q̂k�
r̂T ¼ ½̂r1 r̂2 . . .r̂k�

ð13Þ

Then the adaptive law (11) takes the following form:

_̂
f ¼ �Cf bsign ewb� Cf r

0w2 diagðbÞdiagðbÞð̂f � f̂
�Þ

_̂q ¼ Cqbsign eypb� Cqr
0y2

p diagðbÞdiagðbÞðq̂� q̂�Þ
_̂r ¼ �Crbsign eb� Crr

0diagðbÞ diagðbÞð̂r� r̂�Þ

ð14Þ

where Cf 2 R
k�k;Cq 2 R

k�k; and Cr 2 R
k�k are positive

definite matrices, diagðxÞ 2 R
k�k is a diagonal matrix with

the elements of vector x on the main diagonal, while

f̂
� 2 R

k; q̂� 2 R
k; and r̂� 2 R

k are the a priori estimates of

the control gain vectors.

3.3 The sketch of the stability proof

The reference model (8) can be rewritten in the following

form:

_ym ¼ �amym þ bmw ð15Þ

By subtracting (15) from (7), the following tracking-error

model is obtained

_e ¼ �ameþ ðbT bÞðbT f̂Þ � bm

� �
w

� ðbT bÞðbT q̂Þ þ ðbT aÞ � am

� �
yp

þ ðbT bÞðbT r̂Þ þ ðbT cÞ
� �

þDuðpÞu� DyðpÞyp þ d

ð16Þ
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Now we assume that there exist constant control

parameters f�; q�; and r� that stabilise the closed-loop

system. This is a mild assumption and it is always fulfilled

unless the unmodeled dynamics are unacceptably high.

These parameters are only needed in the stability analysis

and can be chosen to make the ‘‘diference’’ between the

closed-loop system and the reference model small in some

sense (the defintion of this ‘‘diference’’ is not important

for the analysis). The parameters f�; q�; and r� are

sometimes called the ‘‘true’’ parameters because they

result in the perfect tracking in the absence of unmodeled

dynamics and disturbances. The parameter errors are

defined as:

~f ¼ f̂ � f�

~q ¼ q̂� q�

~r ¼ r̂� r�
ð17Þ

The expressions in the square brackets in Eq. (16) can be

rewritten similarly as in Blažič et al. (2003):

ðbT bÞðbT f̂Þ � bm

h i
¼ bsignb

T~f þ gf

¼ bsign

Xk

i¼1

bi
~fi þ gf

ðbT bÞðbT q̂Þ þ ðbTaÞ � am

� �
¼ bsignb

T ~qþ gq

¼ bsign

Xk

i¼1

bi~qi þ gq

ðbT bÞðbT r̂Þ þ ðbT cÞ
� �

¼ bsignb
T~rþ gr

¼ bsign

Xk

i¼1

bi~ri þ gr ð18Þ

where bounded residuals gf(t), gq(t), and gr(t) are

introduced [the boundedness can be shown simply; see

also Blažič et al. (2003)]. The following Lyapunov

function is proposed for the proof of stability:

V ¼ 1

2
e2 þ 1

2

Xk

i¼1

c�1
fi

~f 2
i þ

1

2

Xk

i¼1

c�1
qi ~q2

i þ
1

2

Xk

i¼1

c�1
ri ~r2

i ð19Þ

Calculating the derivative of the Lyapunov function along

the solution of the system (16) and taking into account (18)

and adaptive laws (11) we obtain:

_V ¼ e_eþ
Xk

i¼1

c�1
fi

~fi
_̂
f iþ

Xk

i¼1

c�1
qi ~qi

_̂qiþ
Xk

i¼1

c�1
ri ~ri

_̂ri

¼�ame2þgf we�gqypeþgreþ eDuðpÞu� eDyðpÞypþ ed

�
Xk

i¼1

r0w2b2
i ðf̂i� f̂ �i Þ~fi�

Xk

i¼1

r0y2
pb

2
i ðq̂i� q̂�i Þ~qi

�
Xk

i¼1

r0b2
i ðr̂i� r̂�i Þ~ri ð20Þ

In principle the first term on the right-hand side of Eq. (20)

is used to compensate for the next six terms while the last

three terms prevent parameter drift. The terms from the

second one to the seventh one are formed as a product

between the tracking error eðtÞ and a combined error

E(t) defined as:

EðtÞ ¼ gf ðtÞwðtÞ � gqðtÞypðtÞ þ grðtÞ þ DuðpÞuðtÞ
� DyðpÞypðtÞ þ dðtÞ ð21Þ

Eq. (20) can be rewritten as:

_V ¼ �am e2 � Ee
am

� �
�
Xk

i¼1

r0w2b2
i ðf̂i � f̂ �i Þ~fi

�
Xk

i¼1

r0y2
pb

2
i ðq̂i � q̂�i Þ~qi �

Xk

i¼1

r0b2
i ðr̂i � r̂�i Þ~ri ð22Þ

The first term on the right-hand side of Eq. (22) becomes

negative if jej[ jEj
am
: If the combined error were a priori

bounded, the boundedness of the tracking error e would be

more or less proven. The problem lies in the fact that not

only bounded signals (w(t), gf(t), gq(t), gr(t), d(t)) are

included in E(t), but also the ones whose boundedness is

yet to be proven (u(t), yp(t)). If the system becomes

unstable, the plant output yp(t) becomes unbounded and,

consequently, the same applies to the control input u(t). If

yp(t) is bounded, it is easy to see from the control law that

u(t) is also bounded. Unboundedness of yp(t) is prevented

by leakage terms in the adaptive law. In the last three terms

in Eq. (22) that are due to the leakage there are three

similar expressions. They have the following form:

ðf̂iðtÞ � f̂ �i Þ~fiðtÞ ¼ ðf̂iðtÞ � f̂ �i Þðf̂iðtÞ � f �i Þ ð23Þ

It is simple to see that this expression is positive if either

f̂i [ maxff̂ �i ; f �i g or f̂i\ minff̂ �i ; f �i g: The same reasoning

applies to q̂i and r̂i: This means that the last three terms in

Eq. (22) become negative if the estimated parameters are

large (or small) enough. The novelty of the proposed

adaptive law with respect to the one in Blažič et al. (2003)

is in the quadratic terms with yp and w in the leakage.

These terms are used to help cancelling the contribution of

eE in (22):

eE ¼ egf w� egqyp þ egr þ eDuðpÞu� eDyðpÞyp þ ed

ð24Þ

Since eðtÞ is the difference between yp(t) and ym(t) and the

latter is bounded, e ¼ OðypÞ when yp tends to infinity. By

analysing the control law and taking into account stability

of parasitic dynamics DuðsÞ and DyðsÞ the following can be

concluded:

u ¼ OðypÞ;DuðpÞu ¼ OðypÞ ) eE ¼ Oðy2
pÞ ð25Þ
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The third term on the right-hand side of Eq. (22) is �ðq̂i �
q̂�i Þ~qiOðy2

pÞ which means that the ‘‘gain’’ ðq̂i � q̂�i Þ~qi with

respect to yp
2 of the negative contributions to _V can always

become greater (as a result of adaptation) than the fixed gain

of quadratic terms with yp in Eq. (24). The growth of the

estimated parameters is also problematic because these

parameters are control gains and high gains can induce

instability in combination with parasitic dynamics. Conse-

quently, r0 has to be chosen large enough to prevent this

type of instability. Note that the stabilisation in the presence

of parasitic dynamics is achieved without using an explicit

dynamic normalisation that was used in Blažič et al. (2003).

The stability analysis of a similar adaptive law for linear

systems was treated in Blažič et al. (2010) where it was

proven that all the signals in the system are bounded and

the tracking error converges to a residual set whose size

depends on the modelling error if the leakage parameter r0

is chosen large enough with respect to the norm of parasitic

dynamics. In this paper the ‘‘modelling error’’ is E(t) from

Eq. (21), and therefore the residual-set size depends on the

size of the norm of the transfer functions jjDujj and jjDyjj;
the size of the disturbance d, and the size of the bounded

residuals gf(t), gq(t), and gr(t).

Only the adaptation of the consequent part of the fuzzy

rules is treated in this paper. The stability of the system is

guaranteed for any (fixed) shape of the membership func-

tions in the antecedent part. This means that this approach

is very easy to combine with existing evolving approaches

for the antecedent part. If the membership functions are

slowly evolving, these changes introduce another term to _V

which can be shown not to be larger than O(yp
2). This means

that the system stability is preserved by the robustness

properties of the adaptive laws. If, however, fast changes of

the membership functions occur, a rigorous stability anal-

ysis would have to be performed.

4 Simulation examples

A simulation example will be given that illustrates the

proposed approach. A simulated plant was chosen since it

is easier to make the same operating conditions than it

would be when testing on a real plant. The simulated test

plant consisted of three water tanks. The schematic repre-

sentation of the plant is given in Fig. 1. The control

objective was to maintain the water level in the third tank

by changing the inflow into the first tank.

When modelling the plant, it was assumed that the flow

through the valve was proportional to the square root of the

pressure difference on the valve. The mass conservation

equations for the three tanks are:

S1
_h1 ¼ /in � k1signðh1 � h2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh1 � h2j

p

S2
_h2 ¼ k1signðh1 � h2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh1 � h2j

p
� k2signðh2 � h3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh2 � h3j

p

S3
_h3 ¼ k2signðh2 � h3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh2 � h3j

p
� k3signðh3Þ

ffiffiffiffiffiffiffi
jh3j

p

ð26Þ

where / in is the volume inflow into the first tank,

h1, h2, and h3 are the water levels in three tanks,

S1, S2, and S3 are areas of the tanks cross-sections, and

k1, k2, and k3 are coefficients of the valves. The following

values were chosen for the parameters of the system:

S1 ¼ S2 ¼ S3 ¼ 2� 10�2 m2

k1 ¼ k2 ¼ k3 ¼ 2� 10�4m5=2s�1
ð27Þ

The nominal value of inflow /in was set to 8� 10�5m3s�1;

resulting in steady-state values 0.48, 0.32 and 0.16 m for

h1, h2, and h3 respectively. In the following, u and yp

denote deviations of /in and h3 respectively from the

operating point.

By analysing the plant it can be seen that the plant is

nonlinear. It has to be pointed out that the parasitic dynamics

are also nonlinear, not just the dominant part as was assumed

in deriving the control algorithm. This means that this

example will also test the ability of the proposed control to

cope with nonlinear parasitic dynamics. The coefficients of

the linearised system in different operating points depend on

u, h1, h2, and h3 even though that only yp will be used as an

antecedent variable z1 which is again violation of the basic

assumptions but still produces fairly good results.

The proposed control algorithm was compared to a clas-

sical model reference adaptive control (MRAC) with e1-

Fig. 1 Schematic

representation of the plant
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modification. Adaptive gains cfi, cqi, and cri in the case of the

proposed approach were the same as cf, cq, and cr, respec-

tively, in the case of MRAC. A reference signal was chosen

as a periodic piece-wise constant function which covered

quite a wide area around the operating point (±50 % of the

nominal value). There were 11 triangular fuzzy membership

functions (the fuzzification variable was yp) used; these were

distributed evenly across the interval [-0.1, 0.1]. As already

said, the evolving of the antecedent part was not done in this

work. The control input signal u was saturated at the interval

½�8� 10�5; 8� 10�5�. No prior knowledge of the estimated

parameters was available to us, so the initial parameter

estimates were 0 for all examples.

The design objective is that the output of the plant fol-

lows the output of the reference model 0.01/(s ? 0.01).

The reference signal was the same in all cases. It consisted

of a periodic signal. The results of the experiment with the

classical MRAC controller with e1-modification are shown

in Fig. 2.

We used the following design parameters: cf ¼
10�4; cq ¼ 2� 10�4; cr ¼ 10�6; r0 ¼ 0:1: Figures 3 and 4

show the results of the proposed approach, the former

shows a period of system responses after the adaptation has

settled, the latter depicts time plots of the estimated

parameters. Since f̂; q̂; and r̂ are vectors, all elements of the

vectors are depicted. Note that every change in the refer-

ence signal results in a sudden increase in tracking error e
(up to 0.01). This is due to the fact that zero tracking of the

reference model with relative degree 1 is not possible if the

plant has relative degree 3.

The experiments show that the performance of the

proposed approach is better than the performance of the

MRAC controller for linear plant which is expectable due

to nonlinearity of the plant. Very good results are obtained

in the case of the proposed approach even though that the

parasitic dynamics are nonlinear and linearised parameters

depend not only on the antecedent variable yp but also on

others. The spikes on e in Fig. 3 are consequences of the

fact that the plant of ’relative degree’ 3 is forced to follow

the reference model of relative degree 1. These spikes are

inevitable no matter which controller is used.

The drawback of the proposed approach is relatively

slow convergence since the parameters are only adapted

when the corresponding membership is non-zero. This

drawback can be overcome by using classical MRAC in the

beginning when there are no parameter estimates or the

estimates are bad. When the system approaches desired

behaviour the adaptation can switch to the proposed one by

initialising all elements of vectors f̂; q̂; and r̂ with esti-

mated scalar parameters from the classical MRAC.
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Fig. 2 The MRAC controller—time plots of the reference signal and

outputs of the plant and the reference model (upper figure), time plot

of tracking error (middle figure), and time plot of the control signal

(lower figure)
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Fig. 3 The proposed approach—time plots of the reference signal

and outputs of the plant and the reference model (upper figure), time

plot of tracking error (middle figure), and time plot of the control

signal (lower figure)
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5 Conclusion

A new control approach comprising of the known control

law and a new adaptive law was presented in the paper.

The advantage of the proposed approach is that it is very

simple to design but it still offers the advantages of non-

linear and adaptive controllers. The approach enables easy

implementation in control systems with evolving anteced-

ent part. This combination results in a high-performance

and robust control of nonlinear and slowly varying sys-

tems. It was shown on the example that good results can be

obtained if a third order plant is treated as a first order

plant. The drawback of the approach is long time of

adaptation that is the result of the large number of

parameters that have to be estimated. In some cases this is

also an advantage—if the disturbance is present in some

domains, only the corresponding fuzzy control gains will

be affected.
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